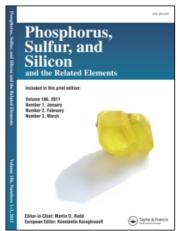
This article was downloaded by:


On: 28 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Reactions of Hydrazonoyl Halides 33 1 : Synthesis of Some New 2,3-Dihydro-1,3,4-thiadiazoles Containing Pyrazol-3-yl, Indolin-2-one-2-yl and Indan-1,3-dione-2-yl Moieties

Abdou O. Abdelhamid^a; Soad M. Abdelgawad^b; Sohad F. El-Sharnoby^c
^a Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt ^b Department of Chemistry, Faculty of Science (Girls Branch), Azhar University, Cairo, Egypt ^c Agriculture Research Center, Giza, Egypt

Online publication date: 27 October 2010

To cite this Article Abdelhamid, Abdou O. , Abdelgawad, Soad M. and El-Sharnoby, Sohad F.(2002) 'Reactions of Hydrazonoyl Halides 33 1 : Synthesis of Some New 2,3-Dihydro-1,3,4-thiadiazoles Containing Pyrazol-3-yl, Indolin-2-one-2-yl and Indan-1,3-dione-2-yl Moieties', Phosphorus, Sulfur, and Silicon and the Related Elements, 177: 11, 2699 — 2709

To link to this Article: DOI: 10.1080/10426500214563 URL: http://dx.doi.org/10.1080/10426500214563

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur and Silicon, 2002, Vol. 177:2699–2709 Copyright © 2002 Taylor & Francis 1042-6507/02 \$12.00 + .00

DOI: 10.1080/10426500290110676

REACTIONS OF HYDRAZONOYL HALIDES 33¹: SYNTHESIS OF SOME NEW 2,3-DIHYDRO-1,3,4-THIADIAZOLES CONTAINING PYRAZOL-3-YL, INDOLIN-2-ONE-2-YL AND INDAN-1,3-DIONE-2-YL MOIETIES

Abdou O. Abdelhamid, a Soad M. Abdelgawad, b and Sohad F. El-Sharnoby^c Department of Chemistry, Faculty of Science, Cairo University, Giza 12316, Egypt; a Department of Chemistry, Faculty of Science (Girls Branch), Azhar University, Cairo, Egypt; b and Agriculture Research Center, Giza, Egypt^c

(Received February 24, 2002; accepted April 12, 2002)

Some new 2,3-dihydro-1,3,4-thiadiazoles containing pyrazol-3-yl, indolin-2-one-2-yl and indan-1,3-dione-2-yl moieties in a good yields obtained from the reaction of hydrazonoyl halides with thiocarbamate and carbodithioate in ethanolic triethylamine respectively. In contrast, pyrazolylthiourea reacts with hydrazonoyl halides under the same condition afford corresponding hydrazonoyl sulfide derivatives.

Keywords: 2,3-Dihydro-1,3,4-thiadiazole; carbodithioate; hydrazonoyl halides; nitrile imine

INTRODUCTION

Many pyrazoles have been reported be use as antipyretic and analgesic drugs, ²⁻⁴ bactericides, and fungicides. ⁵ Isatin derivatives have been used in the development of colour photographic recording materials ⁶⁻⁸ of blood coagulation, ⁹⁻¹² of liquid crystal components for display devices, ¹³⁻¹⁵ and in the inhibition of corrosion of aluminum, ¹⁶ Fe-Ni alloys ¹⁷ and of iron. ¹⁸ On the other hand; thiadiazoles are known to be highly biologically active reagents. ¹⁹⁻²¹ Based on these findings, it was of interest to synthesis some 2,3-dihydro-1,3,4-thiadiazoles directly with pyrazol-3-yl or indolin-2-one-2-yl or indan-1,3-dione-2-yl moieties are expected to posses potential biological activities.

Address correspondence to Abdou O. Abdelhamid, Department of Chemistry, Faculty of Science, Cairo University, Giza 12316, Egypt. E-mail: Abdou@main-scc.cairo.eun.eg

RESULTS AND DISCUSSION

N-phenyl-N-(5-phenylpyrazol-3-yl)thiourea (1) reacts with C-ethoxy-carbonyl-N-phenylhydrazonoyl chloride (2a) to give isolable product. Its structure was confirmed on the basis of analytical and spectroscopic data. Thus, IR (cm⁻¹) spectrum showed bands at 3330 (NH) and 1701 (CO) and its 1 H NMR (δ ppm) spectrum showed signals at $\delta = 1.22$ (t, 6H), 4.20 (q, 4H), 7.01–7.47 (m, 10H) and 10.83 (s, br., 2H). Based on these data the product formulated as ethyl 2-[2-aza-1-(ethoxycarbonyl)-2-(phenylamino)vinylthio]-3-aza-3-(phenyl-amino)prop-2-enoate (7a). Structure 7 was further confirmed by independent synthesis. Thus, cyanothioacetamide treated with 2a to produce a product²² proved to be identical in all respects (m.p., mixed m.p., and spectra) with 7a. The formation of 7 can be explained via elimination hydrogen chloride to give the intermediate 3, which readily to give 6. Compound 6 reacts with 2a to give the final product 7a. On the above date the structures 4 and 5 were ruled out (cf. Scheme 1).

SCHEME 1

Also, compound 1 react with C-acetyl-N-phenylhydrazonoyl chloride (8a) in N,N-dimethylformamide containing potassium hydroxide to give product, identified as (3E)-4-aza-3-{1-[aza(phenylamino)methylene]-2-oxopropylthio}-4-(phenylamino)but-3-en-2-one (12a). Structure 12a was confirmed on the basis of analytical and spectroscopic data. Thus, IR (cm⁻¹) spectrum of 12a revealed bands at 3425 (NH) and 1658 (CO). Its 1 H NMR (δ ppm) spectrum showed signals at δ = 2.53 (s, 6H), 7.06–7.43 (m, 10H) and 11.55 (s, br., 2H). Unequivocal support for the structure 12a, it showed no depression in mixed m.p. with authentic sample²³ (which prepared from reaction of N-phenylcyanothioacetamide with 8a) (cf. Scheme 2).

SCHEME 2

On the other hand, treatment of potassium [(3-phenylpyrazol5-yl)amino]methanedithioate $(13)^{24}$ with methyl iodide afforded 3-[(methylthio)thiocarbonoylamino]-5-phenylpyrazole (14). Its structure was confirmed on the basis of elemental analyses, spectral data, and chemical transformation (cf. Experimental part). Compound 14 react with C-ethoxycarbonyl-N-Phenylhydrazonoyl chloride (2a) in ethanol containing triethylamine gave 2,3-dihydro-1,3,4-thiadiazole 4a. The structure was deduced from their spectral and elemental analysis. IR (cm⁻¹) spectrum revealed bands at 3330 (NH) and 1710 (CO). Its 1 H NMR (δ ppm) spectrum showed signals at δ = 1.44 (t, 3H, CH₂CH₃), 4.33 (q, 2H, CH₂CH₃), 6.4 (s, IH, pyrazole C-4), 7.21–7.47 (m, 10H,

ArH's), and 8.42 (s, IH, NH). The formation of thiadiazole **4a** can be explained via elimination of methanethiol from cycloadduct **16**, which is assumed to be formed from 1,3-dipolar cycloaddition of nitrile imide (generate in situ by treatment of **2a** with triethylamine) to C=S double bond of **14** (pathway A) or by its stepwise path involving substitution via 1,3-addition of thiol **14** to nitrile imide to give a cyclic hydrazone **15** (pathway B), which transformed to cyclic intermediate **16**. Cyclization of the latter is achieved by elimination of methanethiol to afford the final product **4a**. All attempts to isolate either intermediate hydrazone **15** or cycloadduct **16** were unsuccessful (cf. Scheme 3)

SCHEME 3

Similarly, the 3-[(methylthio)thiocarbonaylamino]-5-phenylpyrazole (14) reacted with the appropriate hydrazonoyl halides 2b, (8, 17)a, b, 18–20, in ethanolic triethylamine to give the corresponding 2,3-dihydro-1,3,4-thiadiazole 4b, (10, 22)a, b, and 23–25, respectively (cf. Scheme 3).

The potential reactivity of compounds $27(\mathbf{a}^{25}, \mathbf{b})$ [which prepared from reaction of isatin with alkyl hydrazinecarbodithioate ($26\mathbf{a}, \mathbf{b}$)] toward hydrazonoyl halides to afford 2,3-dihydro-1,3,4-thiadiazoles derivatives. Thus, $27\mathbf{a}$ reacted with C-ethoxyl-N-phenylhydrazonoyl chloride ($2\mathbf{a}$) in ethanol containing triethylamine to afford 2,3-dihydro-1,3,4-thiadiazole derivatives $30\mathbf{a}$.

Structure of **30a** was confirmed on the basis of analytical, spectroscopic data and alternative synthesis methods. Thus IR (cm⁻¹) spectrum revealed bands at 3147 (NH) and 1720, 1705 (CO's). ¹H NMR (δ ppm) spectrum showed signals at δ = 1.44 (t, 3H), 4.34(q, 2H), 7.21–7.74 (m, 9H), and 10.71 (s, br., 1H). On the other hand, the reaction of **27b** with **2a** in ethanol containing triethylamine afforded product identical in all respects (m.p., mixed m.p., and spectra) with **30a**.

Unequivocal support on the structure of **30a** obtained by reaction of 2-hydrazino-2,3-dihydro-1,3,4-thiadiazole²⁶ (**31**) with isatin (**25**) gave identical product in all respect (m.p., mixed m.p., and spectra) with **30a** (cf. Scheme 4). The formation of unsymmetrical azine **30** can be explained via elimination alkyl thiol (RSH) from cycloadduct **29**, which assumed to be formed from 1,3-dipolar cycloaddition or 1,3-addition of nitrile imine to CS or thiol of **27**.

Similarly, the appropriate hydrazonoyl halides **2b**, (**8**, **17**)**a**, **b**, **18**, **19**, **21** react with the appropriate **27a**, **b** in ethanol containing triethylamine to give the corresponding unsymmetrical azine **30b**, (**32**, **33**)**a**, **b**, and **34–36** respectively. All compounds synthesized are elucidated its structure on the basis elemental analysis and spectroscopic data (cf. Experimental part).

Finally, indon-1,2,3-trione (**37**) reacts with the appropriate alkyl hydrazinecarbodthioate (**26a**, **b**) to give the corresponding 2-{aza-[alkylthiothioxomethyl)-amino]methyelne}indi-one-1,3-dione (**38a**, **b**), respectively. The structure of **38** was confirmed on the basis of analytical, spectroscopic data, and chemical transformation. Thus, IR (cm⁻¹) spectra of **38** revealed bands at 3330 (NH), 1728, and 1698 (COs). 1 H NMR (δ ppm) spectrum of **38a** showed signals at 2.95 (s, 3H) and 7.22–7.46 (m, 4H). Thus, the appropriate of **40a**, **b** reactions with C-ethoxycarbonoyl-N-phenylhydrazonoyl chloride (**2a**) in ethanol containing triethylamine to afford products has molecular formula $C_{20}H_{14}N_4O_4S$. IR (cm⁻¹) spectrum revealed bands near 1740–1715 (CO's). 1 H NMR spectrum showed signals (δ ppm) at 1.36 (t, 3H, CH₂CH₃), 4.42 (q, 2H, CH₂CH₃) and 7.35–8.05 (m, 9H, ArH's). Based on

SCHEME 4

the above data the product was formulated as: ethyl 2-[1,2-diaza-z-(1,3-dioxindan-2-ylidene-3-phenyl-1,3,4-thiadiazdine-5-carboxylate (41a).

Unequivocal support on the structure obtained from the study of the products reaction of 2-hydrazino-2,3-dihydro-1,3,4-thiadiazole **31** with indain-1,2,3-trione in ethanol, gave identical properties (m.p., mixed m.p., and spectra) with **41a** (cf. Scheme 5). The formation of **41** can be explained via elimination of alkyl mercaptan from cycloaddition **40**, which assumed to be formed from 1,3-dipalor cycloaddition or 1,3-addition of nitrile imine (which prepared in situ from hydrazonoyl chloride **2a** with triethylamine), to carbodithioate **38** (cf. Scheme 5).

Simiar, the appropriate hydrazonoyl halides **2b**, (**8**, **17**)**a**, **b**, **18–20** react with the appropriate **38a**, **b** in ethanol containing triethylamine to give the corresponding 2,3-dihydro-1,3,4-thiadiazole derivatives **41b**,(**42**, **43**)**a**, **b**, and **44–46**, respectively (cf. Scheme 5).

TABLE I Characterization Data of the Newly Synthesized Compounds

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compd.	l. Yield m.p. (°C) Mol. formula ————————————————————————————————————			calcd./f	calcd./found			
4b OC ₂ H ₅ 80 95 C ₂ H ₁ s _N S _Q S 62.20 4.72 17.27 7.90 10a CH ₃ 80 115 C ₁₉ H ₁₅ N ₅ OS 63.14 4.18 19.37 8.87 10b CH ₃ 75 139 C ₂₀ H ₁₇ N ₅ OS 63.94 4.50 118 19.37 8.87 10b CH ₃ 75 139 C ₂₀ H ₁₇ N ₅ OS 63.98 4.50 18.66 8.54 14 — — 168-70 C ₁₁ H ₁₁ N ₂ S ₂ 52.98 4.49 16.85 25.72 22a NHC ₆ H ₅ 65 113-115 C ₂₄ H ₁₈ N ₆ OS 65.73 4.13 19.16 7.30 22b NHC ₆ H ₅ 60 75-77 C ₂₅ H ₂₉ N ₆ OS 66.35 4.43 18.57 7.08 22b NHC ₆ H ₅ 80 58-60 C ₂₄ H ₁₇ N ₅ OS 68.07 4.00 14.70 7.30 23 C ₆ H ₅ 80 58-60 C ₂₂ H ₁₉ N ₅ OS 71.01 4.04<	-	R		•		C	Н	N	S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4a	$\mathrm{OC_2H_5}$	85						8.19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	00.11	00						
10a CH₃ 80 115 C₁₃H₁₅N₅OS 63.14 4.18 19.37 8.87 10b CH₃ 75 139 C₂₀H₁γN₅OS 63.98 4.56 18.65 8.54 14 — — 168-70 C₁₁H₁₁N₂S₂ 52.98 4.49 16.85 25.72 22a NHC₀H₅ 65 133-115 C₂₄H₁₃N₀OS 65.73 4.13 19.10 7.30 22b NHC₀H₅ 60 75-77 C₂₅H₂₀N₀OS 66.35 4.41 19.10 7.30 22b NHC₀H₅ 80 58-60 C₂₄H₁₃N₀OS 66.35 4.41 18.50 7.08 23 C₆H₅ 80 58-60 C₂₂H₁₃N₀OS 66.30 4.40 18.50 7.08 24 2-C₁₀H₂ 70 80-82 C₂₂H₁¬N₀OS 71.01 4.04 14.78 6.77 25 2-C₄H₃S 65 50 C₂₂H₁¬N₃N₀OS 71.01 4.04 14.78 6.77 27b	46	OC_2H_5	80						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	CH	90						
10b CH₃ 75 139 C₂₀H₁γN₅OS 63.98 4.56 18.65 8.54 14 — 168-70 C₁1H₁1N₂S₂ 52.98 4.49 16.85 25.72 22a NHC₀H₅ 65 113-115 C₂₄H₁8N₀OS 65.73 4.13 19.16 7.31 22b NHC₀H₅ 60 75-77 C₂₅H₂₀N₀OS 66.35 4.45 18.57 7.08 23 C₀H₅ 80 58-60 C₂₄H₁γN₅OS 66.35 4.45 18.50 7.00 24 2-C₁₀Hγ 70 80-82 C₂₂H₁γN₅OS 66.35 4.45 18.50 7.00 24 2-C₁₀Hγ 70 80-82 C₂₂H₁γN₅OS 68.07 4.05 16.50 7.50 24 2-C₁₀Hγ 70 80-82 C₂₂H₁γN₅OS 71.00 4.00 14.70 6.74 25 2-C₄H₃S 65 50 C₂₂H₁γN₅OS 51.00 3.00 14.92 14.92 14.92 14.92 1	10a	СП3	00						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10h	CH.	75						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	CH3	10						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	_	_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22a	NHC ₆ H ₅	65						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		05							7.30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22b	NHC_6H_5	60		$C_{25}H_{20}N_6OS$				7.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 0				66.30	4.40		7.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	C_6H_5	80	58-60	$C_{24}H_{17}N_5OS$	68.07	4.05	16.53	7.57
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Pet. ether	423.49	68.00	4.00	16.50	7.50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	$2\text{-}\mathrm{C}_{10}\mathrm{H}_{7}$	70	80-82	$C_{28}H_{19}N_5OS$	71.01	4.04	14.78	6.77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Pet. ether	473.55	71.00	4.00	14.70	6.74
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	$2\text{-}\mathrm{C_4H_3S}$	65	50	$C_{22}H_{15}N_5OS_2$	61.52	3.52	16.30	14.92
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									14.50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27b	$\mathrm{CH_{2}C_{6}H_{5}}$	89						19.58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30a	$\mathrm{OC_2H_5}$	85						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30b	OC_2H_5	80						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	CII	0.5						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32a	CH_3	85						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99h	CH	75						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	320	C113	75						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	339	NHC ₂ H ₂	70						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00a	111106115	10						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33b	NHC _e H _z	65						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	1,110,011,0	00						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	C_6H_5	70						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0 0							7.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	$2-C_{10}H_{7}$	80		$C_{27}H_{17}N_5O_2S$				6.74
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 .		AcOH				14.60	6.70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	$2\text{-}\mathrm{C_4H_3O}$	75		$C_{21}H_{13}N_5O_3S$		3.15	16.85	7.71
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				AcOH	415.44	60.50	3.30	16.80	7.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38a	CH_3	88	108-110	$\mathrm{C_{11}H_8N_2O_2S_2}$	49.98	3.05	10.59	24.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				EtOH	264.32	49.90	3.00	10.50	24.20
41a OC_2H_5 80 190–92 $C_{20}H_{14}N_4O_4S$ 59.11 3.47 13.78 7.89	38b	$\mathrm{CH_{2}C_{6}H_{5}}$	92						18.83
2 0 11 1 1									18.80
AcOH 406.42 59.10 3.40 13.70 7.80	41a	OC_2H_5	80						7.89
				AcOH	406.42	59.10	3.40	13.70	7.80

(Continued on next page)

TABLE I Characterization Data of the Newly Synthesized Compounds (*Continued*)

Compd.		Yield	m.p. (°C) solvent	Mol. formula mol. wt.	% Analyses calcd./found			
no.	R	(%)			C	Н	N	S
41b	OC_2H_5	80	180-82	$\rm C_{21}H_{16}N_{4}O_{4}S$	59.99	3.83	13.32	7.62
			AcOH	420.45	59.90	3.80	13.30	7.60
42a	CH_3	85	140	$C_{19}H_{12}N_4O_3S$	60.63	3.21	14.88	5.81
			AcOH	376.39	60.60	3.20	14.80	8.50
42b	CH_3	75	170	$C_{20}H_{14}N_4O_3S$	61.53	3.61	14.35	8.21
			AcOH	390.42	61.50	3.60	24.30	8.20
43a	C_6H_5NH	72	185	$C_{24}H_{15}N_5O_3S$	63.57	3.33	15.44	7.07
	0 0		AcOH	453.48	63.50	3.30	15.40	7.00
43b	C_6H_5NH	75	190	$C_{25}H_{17}N_5O_3S$	64.23	3.66	14.98	6.86
			AcOH	467.50	64.00	3.60	14.90	6.80
44	C_6H_5	70	145	$C_{24}H_{14}N_4O_3S$	65.74	3.22	12.78	7.31
			AcOH	438.46	65.70	3.20	12.70	7.30
45	$2-C_{10}H_{7}$	80	125-27	$C_{28}H_{16}N_4O_3S$	68.84	3.30	11.47	6.56
	-0 .		AcOH	488.50	68.80	3.30	11.40	6.50
46	$2-C_4H_3O$	75	195	$C_{22}H_{12}N_4O_4S$	61.67	2.82	13.08	7.48
	1 0		AcOH	425.43	61.60	2.80	13.00	7.40

SCHEME 5

TABLE II Spectroscopic Data of the Newly Synthesized Compounds

Compd.	IR (cm ⁻¹)	$^{1}\mathrm{H}\ \mathrm{NMR}\ (\delta\ \mathrm{ppm})$
4a	3330 (NH) and 1707 (CO)	1.44 (t, 3H, CH ₂ CH ₃), 4.44 (q, 2H, CH ₂ CH ₃), 6.4 (s, IH, pyrazole (C-4'), 7.21–7.92 (m, 11 H,
4b	3261 (NH) and 1708 (CO).	ArHs and NH) 1.44 (t, 3H, CH ₂ CH ₃), 2.3 (s, 3H, 4-CH ₃ C ₆ H ₄), 4.44 (q, 2H, CH ₂ CH ₃), 6.4 (s, IH, pyrazole (C-4'), 7.21–7.92 (m, 10 H, ArHs and NH)
10	3330 (NH) and 1701.6 (CO)	1.22 (t, 6H), 4.20 (q, 4H), 7.01–7.47 (m, 10H) and 10.83 (s, br., 2H).
14	3247 (NH) and 1681 (CO)	2.38 (s, 3H), 6.4 (s, 1H), 7.07–7.48 (m, 10H) and 10.68 (s, 1H).
22a	3244 (NH) and 1676	6.42 (s, 1H), 7.22–7.52 (m, 15H), 9.22 (s, 1H) and 10.67 (s, 1H).
22b	3240 (NH) and 1672	2.33 (s, 3H), 6.42 (s, 1H), 7.22–7.52 (m, 9H), 9.22 (s, 1H) and 10.67 (s, 1H).
24	3240 (NH) and 1673 (CO)	6.42 (s, 1H), 7.17–7.66 (m, 18H).
27a	3340 (NH) and 1703 (CO)	2.92~(s,3H),6.827.53~(m,4H),10.71~(s,1H) and $11.0~(s,1H).$
27b	3340 (NH) and 1703 (CO)	$2.66\ (s,2H),6.827.53\ (m,9H),10.71\ (s,1H)$ and $11.0\ (s,1H).$
30a	3147 (NH) and 1720, 1705 (COs)	1.38 (t, 3H, CH ₂ CH ₃), 4.34 (q, 2H, CH ₂ CH ₃), 7.21–7.74 (m, 9H) and 10.70 (s, br., 1H)
30b	3140 (NH) and 1747 (COs)	1.34 (t, 3H, CH ₂ CH ₃), 2.48 (s, 3H, 4-CH ₃ C ₆ H ₄), 4.42 (q, 2H, CH ₂ CH ₃), and 6.83–7.87 (m, 9H, ArHs and NH proton).
32a	3134 (NH), 1712, 1691 (CO)	2.33 (s, 3H), 7.21–7.74 (m, 9H) and 10.70 (s, br., 1H)
32b	3161 (NH), 1714, 1693 (CO)	2.33 (s, 3H), 244 (s, 3H), 7.21–7.74 (m, 8H) and 10.70 (s, br., 1H).
38a	3330 (NH), 1728 and 1698 (COs)	2.95 (s, 3H), 7.22–7.46 (m, 4H) and 10.55 (s, 1H)
38b	3330 (NH), 1728 and 1698 (COs)	$2.65\ (s,2H),7.227.46\ (m,9H)\ and\ 10.55\ (s,1H)$
41a	1728,1698 (COs)	$1.36~(t, 3H, CH_2CH_3), 4.42~(q, 2H, CH_2CH_3)\\ and~7.35-8.05~(m, 9H, ArHs)$
41b	1740, 1720 (COs)	1.36 (t, 3H, CH ₂ CH ₃), 2.45 (s, 3H), 4.42 (q, 2H, CH ₂ CH ₃) and 7.35–8.05 (m, 8H, ArHs)
42a	1728, 1689 (COs)	2.32 (s, 3H), and 7.35–8.05 (m, 9H, ArHs)
42b	1728, 1689 (COs)	2.32 (s, 3H), 2.42 (s, 3H), and 7.35–8.05 (m, 8H, ArHs)
45	$1728,1690(\mathrm{COs})$	7.26–8.33 (m, ArHs)

EXPERIMENTAL

All melting points were determined on an electrothermal apparatus and are uncorrected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotometer. 1H NMR spectra were recorded in CDCl₃ and (CD₃)₂SO solutions on a Varian Gemini 300 MHz spectrometer and chemical shifts were expressed in δ units using TMS as internal reference. Elemental analyses were carried out at the Microanalytical Center of the Cairo University.

Syntheses of 2,3-Dihydro-1,3,4-thadiazoles (4, 10, 22)a, b, and 23-25

Equimolar amounts of the appropriate 3-amino-5-phenylpyrazole, potassium hydroxide, carbon hydroxide (5 mmol, each) in N,N-dimethylformamide (15 ml) was stirred at room temperature for 3 h until the potassium hydroxide dissolved, and then methyl iodide (0.5 ml) was added. Each hydrazonoyl hydrazonoyl halides (2, 8, 17)a, b, 18, 19, 21 (5 mmol) was added to the solution with stirring and then triethyamine (0.75 ml) was added. The resulting solid was collected, washed, and then crystallized from acetic acid to afford thiadiazoles (4, 10, 22)a, b, and 23–25, respectively (cf. Tables I and II).

Syntheses of 2,3-Dihydro-1,3,4-thadiazoles (30, 32, 33, 41–43)a, b, 34–36, and 44–46

Triethylamine (0.75 ml, 5 mmol) was added to a mixture of the appropriate (5 mmol) and the appropriate hydrazonoyl bromide (2, 8, 17)a, b, 18–20 (5 mmol) and the appropriate alkyl carbodithioates (29, 40)a, b (5 mmol) in ethanol (20 ml) while stirring. The reaction was stirred for 30 min at room temperature. The formed precipitate was collected, washed with ethanol, and crystallized from acetic acid to give 1,3,4-thiadiazolines (30, 32, 33, 41–43)a, b, 34–36, and 44–46 respectively.

REFERENCES

- a) Part 32: A. O. Abdelhamid, M. M. M. Sallam, and S. A. Amer, *Heteroatom Chem.*,
 468 (2001); b) H. Stetter and E. Rauscher, *Chem. Ber.*, 93, 2054 (1960).
- [2] A. J. Ryan, P. G. Welling, and S. E. Wright, Food Cosmet. Toxicol., 7(4), 287 (1970).
- [3] A. Ebnother, E. Jucker, and A. Lindeman, Helv. Chim. Acta, 42, 1201 (1959).
- [4] A. Burger, Medicinal Chemistry (Interscience, New York, 1945).
- [5] K. Kueffner, P. Marx, and W. Laessig, Ger. Offen. DE 3,217,877 (17 Nov. 1983), pp. 53 [Chem. Abstr., 100, 183105 (1984)].

- [6] A. G. Abolin, E. I. Balabanov, B. P. Bespalov, B. M. Rumyantsev, V. V. Titov, and G. I. Yudina, Zh. Nauch. Prikl. Fotogr., 26, 182 (1981).
- [7] A. Sugai, Kokai Tokkyo Koho JP 9040644 (10 Feb. 1997) [Chem. Abstr., 126, 218539z (1997)].
- [8] H. Anraku, Eur. Pat. Appl. EP 241, 314 (14 Oct. 1987), pp. 45 (1987) [Chem. Abstr., 109, 4559f (1988)].
- [9] H. Anraku, Kokai Tokkyo Koho JP 62240616 1987, pp. 1 (1987) [Chem. Abstr., 108, 183284m (1988)].
- [10] H. Anraku, Jpn. Kokai Tokkyo Koho JP 63 82. 361 (13 Apr. 1988), p. 7 [Chem. Abstr., 110, 228133w (1989)].
- [11] H. Anraku, U.S. Pat. 5413786, pp. 12 (1995); [Chem. Abstr., 122, 1115b (1995)].
- [12] M. Ozutsumi, Y. Ohnishi, Y. Miyazawa, and M. Gonda, Japan Kokai, 75 57, 48 19 (May 1975), p. 6 [Chem. Abstr., 85, 134048k 1976].
- [13] A. V. Ivashchenko, V. T. Lazareva, and V. G. Rumyantsev, Chem. Heterocycl. Compd. (Engl. Transl.), 18, 190 (1982).
- [14] S. Yamamiya, Y. Abe, H. Nishikatsu, and S. Sasaki, JP 4023869, p. 1 (1992) [Chem. Abstr., 117, 9825q (1992)].
- [15] D. D. N. Singh, M. M. Singh, R. S. Chaudhary, and C. V. J. Agarwal, Appl. Electrochem., 587 (1980).
- [16] T. Kawana, A. Hirano, T. Matsuda, H. Kimura, and H. Yatagai, JP 61082325, 1986, p. 1 [Chem. Abstr., 102, 176804z (1985)].
- [17] Y. S. Mohamed, A. E. M. N. Gohar, F. F. Abdel-Latif, and M. Z. A. Badr, *Pharmazie*, 40, 312 (1991).
- [18] P. N. Bharagava and S. C. Sharma, Bull. Soc. Jpn., 35 (1926).
- [19] S. K. Mallick, A. R. Martin, and R. G. Lingard, J. Med. Chem., 14, 528 (1971).
- [20] A. Andolsek, B. Stanovinik, M. Tisler, M. Likar, and P. Schauer, J. Med. Chem., 14, 53 (1971).
- [21] H. Graubaum, J. Prakt. Chem., 335, 88 (1993).
- [22] A. O. Abdelhamid and S. E. Abdou, Sulfur Letter, **6**, 41 (1987).
- [23] A. O. Abdelhamid, S. E. Abdou, and F. H. El-Shiaty, Phosphorus and Sulfur, 88, 217 (1994).
- [24] R. M. Mohareb, H. F. Zohdi, and W. W. Wardakhan, Monatsheftejur Chemie, 126, 1391 (1995).
- [25] Y. P. Kovtun and N. N. Romanov, Khim. Geteroskit Soedin, 211 (1985).
- [26] H. F. Zohdi, N. M. Rateb, M. M. M. Sallam, and A. O. Abdelhamid, J. Chem. Res., (S) 742; (M) 3329 (1998).